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ABSTRACT 
This paper seeks to conduct an investigation into the effects of elastic bi-directional in-situ stress distributions in 
isotropic media in terms of radial closure along the entire length of the cavity, with specific attention given to the near-
face region.  The results presented are obtained from a parametric study based on full three-dimensional finite element 
analyses.  The data are benchmarked using existing field data from the Darlington Intake Tunnel in Southern Ontario.  
The results of the study are then used for developing a simple expression and charts for predicting wall displacements 
along the entire length of a tunnel subjected to different in-situ stress conditions. 
 
RÉSUMÉ 
Cet article cherche à conduire une recherche sur les effets des distributions bi-directionnelles élastiques d'effort in-situ 
dans des médias isotropes en termes de fermeture radiale sur la longueur entière de la cavité; une attention spécifique 
étant donnée à la région proche de la face. Les résultats présentés sont obtenus à partir d'une étude paramétrique 
basée sur une analyse tridimensionnelle complète à l’élément fini. La validation des données fut accompli en utilisant 
des données de champ obtenues du tunnel de prise de Darlington en Ontario méridional. Les résultats de l'étude sont 
alors employés pour développer une expression simple et des diagrammes pour prévoir les déplacements de mur sur la 
longueur entière d'un tunnel soumis à de différentes conditions d’effort in-situ. 
 
NOMENCLATURE 
 
a: Variable Tunnel Radius (m) 
d: Distance from Tunnel Face (m) 
γ: Unit Weight (kN/m3) 
E: Young’s Modulus (GPa) 
K0: Coefficient of Lateral Earth Pressure 
m1, m2, m3, n1, n2, n3: Empirical Constants 
ν: Poisson’s Ratio 
Ω: Normalised Displacement (dimensionless) 
P0: Average Principal Stress (GPa) 
R: Constant Tunnel Radius (m) 
u: Radial Tunnel Displacement (µm, mm) 
 
 
 
 
1.  INTRODUCTION 
 
Some civil engineering projects such as hydroelectric 
works, transportation networks, and electricity power 
plants make use of tunnels for their operation, which can 
enhance the efficiency of these projects.  However, the 
construction of structures that are located at the surface 
do not have the added challenges associated with 
subterranean conditions, or more specifically, those that 
arise from in-situ stresses due to overlaying soil or rock.   
 
It is therefore of interest to the engineer to gain a 
comprehensive understanding of how these forces will 
affect the displacements around the opening of a tunnel 
as it is excavated, and how they are enhanced or altered 
by working under differing in-situ stress conditions.  The 
observed displacements around the periphery of the 
tunnel are the result of the re-distribution of in-situ 
stresses.  The first tool at the engineer’s disposal is 
elasticity theory which can be applied to provide an initial 

estimation of these circumferential displacements about a 
tunnel opening.  Although the behaviour of soil or rock 
material is never truly elastic (nor the properties ever 
isotropic), the simplicity of all elastic solutions that predict 
stresses and displacements present an adequate 
preliminary insight into the effect of various parameters. 
To this end, much work exists in the literature that seeks 
to describe, model and predict these parameters, most 
notably of which are circumferential displacements. 
 
2.  NUMERICAL MODELLING 
 
This paper is concerned primarily with the longitudinal 
displacements that occur after a tunnel has been 
excavated in elastic and isotropic media, especially in the 
region immediately preceding the face advance, typically 
about four to five tunnel radii away from the face.  The 
prototype that was used for the numerical model was that 
of the Darlington G.S. in Pickering, Ontario.  The 
geometry of this tunnel is presented in Figure 1 as a half-
space.  The calculated displacement data were 
benchmarked against measured field data acquired via 
extensometers.  A more detailed discussion is presented 
in the example in Section 5.  

 
The analyses were performed using the Plaxis 3D-Tunnel 
finite element program employing 15-noded wedge 
elements.  The 3D finite element analysis was performed 
using 7020 fifteen-noded isoparametric wedge elements 
with a total of 19991 nodes arranged as shown in Figure 
2. Nodes along the vertical boundaries of the mesh may 
translate freely along the boundaries but are fixed against 
displacements normal to these boundaries.  The nodes at 
the base are fixed against displacements in both 
directions.  The stage of excavation which is depicted in 
the figure is the final phase. 
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Figure 1: Geometry of the Darlington G.S. Tunnel 
 

 
 
Figure 2: 3-D Mesh based on the Darlington G.S. Tunnel 
(Meguid and Rowe, 2006) 
 
3. METHODOLOGY 
 
Three variables, E, ν and γ  were used in a parametric 
study.  E varied from 20 to 30 GPa, ν from 0.27 to 0.33, γ 
from 20 to 25 kN/m3, and each of these cases was 
analysed for K0 = 1, 2, 4, 6, 8, 10.  To check the 
numerical results of this analysis against existing 
solutions, the cases for K0 = 1 were plotted against the 
solutions provided by Panet and Guenot (1982) and by 
Corbetta et al. (1991).  A typical example of the tunnel 
convergence is shown in Figure 3, and it can be seen that 
the calculated displacements matched quite favourably 
with the predicted values of the solutions mentioned 
above. 
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Figure 3: Graphical Comparison of Numerical Predictions 
with Existing Solutions. 
 
The plane-strain data at the springline and crown in the 
numerical model were also compared with the analytical 
solutions provided by Hefny & Lo (1999).  The values at 
the crown matched quite well, whereas the values at the 
springline were always within at least 86% of the 
predicted value.  This difference can be explained by the 
fact that the analytical solution was based on an ideal 
circular opening in an elastic medium, while the numerical 
model that was used was based on a D-shaped tunnel.  
Each set of data was trimmed to show only the 
displacements beginning at the face of the tunnel wall, 
and ending where apparent plane-strain conditions 
existed.  Displacements were then normalised according 
to the relation 
 

0

aP

uE
=Ω  

   
and plotted versus distance from the tunnel face (Ω vs. d).  
Regression was performed, and equations describing the 
predicted displacements were produced for the crown 
and for the springline. 
 
4. RESULTS 
 
Certain trends were noticed after examining all of the 
data.  They can be seen in the following figures.  It should 
be noted that all figures in the sections hereafter depict 
the typical trends mentioned above and were gleaned 
from the parametric study.  Vertical dashed lines indicate 
the location of the tunnel face, and negative values 
denote inward or expanding wall movements. 
 
4.1 Effect of Varying Elastic Parameters 
 
At 20 GPa  (ν = 0.33, γ = 25 kN/m3) the plane-strain 
displacement at the crown was estimated at 0.62 mm, 
and at 4.3 mm at the springline; while at 30 GPa, the 
values were 0.41 mm and 2.9 mm respectively. This was 
a direct consequence of the strength of the medium 
increasing.   Changing ν also had a significant effect, as a 
value of ν = 0.30 (E = 30 GPa, γ = 25 kN/m3) had 
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displacements of 0.59 mm and 3.2 mm for crown and 
springline, respectively. When the value was changed to 
ν = 0.27, the displacements were 0.64 mm and 2.90 mm, 
respectively.  The variation of the unit weight had the 
least effect on the displacements. For γ = 20 kN/m3 (ν = 
0.33, E = 30 GPa) the displacements were 0.33 mm and 
2.3 mm, and for γ = 22.5 kN/m3 they were 0.37 mm and 
2.6 mm. 
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Figure 4: Typical Normalised Displacement Profiles at the 
(a) Crown, and (b) Springline. 
 
4.2 Displacement at the Tunnel Face 
 
It can also be of interest to investigate the movement of 
the face of an opening in soft ground or soft rock (Figure 
5).  Typical displacement patterns are presented in 
Figures 6, 7 and 8.  Negative displacements denote 
inward or concave movements, whereas positive values 
represent outward, bulging or convex behaviour. 
 
 
 
 
 
 
 
 
 
 

Figure 5: Idealised Displacement Profiles on the Tunnel 
Face. 
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Figure 6: Typical Normalised Displacement Profiles at the 
face from the centre point to the (a) Crown, and (b) to the  
Springline. (γ = 20 kN/m3, E = 20 GPa, ν = 0.27) 
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Figure 7: Typical Normalised Displacement Profiles at the 
face from the centre point to the (a) Crown, and (b) to the 
Springline. (γ = 22.5 kN/m3, E = 25 GPa, ν = 0.30) 
 
5.  PREDICTING DISPLACEMENTS 
 
The Darlington G.S. case allowed for significant 
benchmarking of the data.  Insodoing it also facilitated the 
generation of two parametric equations that were used to 
estimate the displacements at the crown and springline 
on the tunnel periphery for any given value of E, γ, ν, or 
K0.  The equations are empirical and take the forms as 
follows: 
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where uc represents the displacements at the crown, and 
us represents the displacements at the springline.  m1, m2, 
m3 and n1, n2, n3 are constants that are dependent on E, γ, 
ν, and K0.  The equations were created by performing 
regression on normalised displacement values for each 
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Figure 8: Typical Normalised Displacement Profiles at the 
face from the centre point to the (a) Crown, and  (b) to the  
Springline. (γ = 25 kN/m3, E = 30 GPa, ν = 0.33) 
 
trial.  The data were truncated where the face of the 
tunnel was modelled and extended until the tunnel 
opening.  Therefore these equations are valid from the 
face of the tunnel (d = 0) until a relatively large distance 
away from the face (d = ∞).   
 
6.     EXAMPLE: THE DARLINGTON TUNNEL 
 
The Darlington G.S. is a D-shaped nuclear electricity 
generating facility situated 60 km east of Toronto.  The 
overburden at the site varies between 21 to 36 m consisting 
of surficial lacustrine deposits and varved silt and clay 
which is underlain by dense to very dense sandy to silty 
tills.  Beneath the overburden, the first 8 m of rock is a 
dark brown fossiliferous thin to medium bedded shaly 
limestone of Whitby Formation.  The next 50 m of rock is 
limestone of the Lindsey Formation, which is mainly a 
fine-grained, fossiliferous, and massively bedded grey 
limestone.  Testing on rock samples from the site showed 
that Eh = 46 GPa.  The ratio between the horizontal to 
vertical modulus (Eh:Ev) varied from 1.1 to 1.5, at an 
average of 1.2.  Therefore the rock was weakly 
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anisotropic (Lo and Lukajic, 1984).  Please refer to 
Figures 9 and 10 for detailed views of the Darlington site. 

 
Table 1: Comparison of Field Data with Numerical Data 
 
High horizontal stresses are common in the rock 
formations in Southern Ontario; it was found that the ratio 
of the horizontal to vertical initial stresses is 
approximately 10 at the springline (Lo and Lukajic, 1984). 
 
 

 
Figure 9: Plan View of the Darlington G.S. (Lo and 
Lukajic, 1984) 

 
Figure 10: Elevation View of the Darlington G.S. (Lo and 
Lukajic, 1984) 

 
The field data were then used to validate the numerical 
model for this case, and a comparison is presented in 
Table 1.  These site data were recovered from 
extensometers that were placed during the excavation 
process of the Darlington Tunnel.  The constants 
generated by the regression procedure were then 
tabulated and were normalised relative to the Darlington 
example. The observed field displacements and the 
numerically predicted displacements compared relatively 
well.  A direct comparison was not possible, as the nodes 
in the mesh did not correspond exactly with the physical 
location of the extensometers; the closest nodes were 
chosen instead.  As can be seen in Table 1 the values 
were of the same order, and the authors felt this level of 
compatibility was sufficient. 
 
7. CONCLUSION 
 
A preliminary description of the displacement profile near 
the advancing face of the tunnel under differing lateral 
stress conditions for isotropic elastic media was 
presented.  The parametric study that followed facilitated 
a simple tool for predicting the longitudinal displacement 
profile near the face as well as for the plane-strain 
regions.  It was based on full, three-dimensional finite-
element analyses.  The results were checked against field 
measurements taken at the Darlington Tunnel of 
Southern Ontario.  While an elastic solution is not 
realistic, it provides the engineer with a means for 
acquiring an excellent initial prediction of the longitudinal 
displacement profile in a tunnel as described above. 
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